Calculus II - Day 4

Prof. Chris Coscia, Fall 2024
Notes by Daniel Siegel

16 September 2024

Divergence Test, p-test

Goals for today:

e Find a criterion satisfied by all convergent series and use this to conclude that certain series
do not converge

o Delermine fOI‘ V\/hich p the sum
Z
kp
k=1

converges (and why!)

Reminders
e Gradescope HW #1: due Tuesday evening
o MyLab HW #3: due Wednesday at noon

Example: (A telescoping series)
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S| = as = sin (g) — sin (g)
Sy =ag + a3 = (sin (g) — sin (g)) + (sin (%) — sin (%))
(Middle two sin (%) terms cancel out)
Sy =ax+as+---+ant1
N+1
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(All middle terms cancel out, leaving only the first and last)
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= g (Si“ (g) —sin (ﬁz))
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Bad news: Other than geometric and telescoping series, it’s hard to find a formula for Sy,
and therefore impossible to determine the sum’s convergence (or even whether it converges).

Best we can do: Answer the question: Does Y 7~ | aj converge or not?

In order for there to be any hope of a series converging, the terms must approach 0.

The Divergence Test:

If zz‘;l ay, converges, then limg_, o ar = 0.
(If limp o0 ai, # 0, then Y 72 | ap diverges.)

Proof: Suppose > a converges. Let

N
SN = Z ag
k=1
be the Nth partial sum.
We know that:
i Sy =5
and
lim Sy_1=25.
N—o00



Thus,
lim (SN—SNfl): lim SN— lim SN,1:S—S:0.
N—o0 N—00

N —o00
So,
li =0.
Ngnoo an 0
Example: The series:
> 1
3 (1 ¥ k) |
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Here, ax, =1+ %

lim <1+;>—1¢0.

k—o0

By the Divergence Test, this series diverges.

Example:

i 1 1+ 1 + = + 1 + (Harmonic series)
—~k 2 3 4 7

The terms do go to 0... but that doesn’t mean the sum converges!

= the Divergence Test is inconclusive.
This series actually diverges:
11 1 1 1 1 1
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Group terms:

3 4 5 6 7 8

(Number of terms grouped together grows with powers of 2)
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(The bolded terms are lowered to a term less than the actual term)
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The series is ”larger than” infinity, so the Harmonic series diverges:
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k
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Example: What about
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12022 7 32 42 72 82 152
(Group terms)
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12 22 32 42 72 82 152
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So, this series converges to a number less than 2.

Conclusion:
o0
> <
k2
k=1

Why does this mean the series converges?

N 1
Let SN = Zk:l %2
The sequence {Sn} is increasing (therefore monotonic) and bounded above by 2. By the Mono-
tone Convergence Theorem, it converges:

— 1
Z — = lim Sy converges.

k‘2 N— oo
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Fact:
<1 2
jg: == = 1.644934 . ..
k=1

In summary:
oo (o)
1 1
g = but g 72 converges.
k=1 k=1

What’s the difference? The terms in both series go to 0, but the second series goes to 0
faster!
In order to converge, not only must ay — 0, but it must do so quickly!
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Example:

Fact: p-series test

e Converges when p > 1

e Diverges when p <1
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Proof: Suppose p > 1. Graph f(z) = =
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Graph of f(z) = 71,0 forp > 1
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Now, we find the area under the curve using boxes.
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f(z) = - with boxes
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f(z) = L with red and blue boxes
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In general:
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Rearrange:
p—] <S<——=+1




Therefore, the sum converges when p > 1:

oo

Example (p=2):

Example (p=3):

=1 1 1 1
;@ is between 31 and 3j+1 <2 and g)

Actual value: 1.2020569... (Apery’s constant)



