Calculus II - Day 4

Prof. Chris Coscia, Fall 2024 Notes by Daniel Siegel

16 September 2024

Divergence Test, p-test

Goals for today:

- Find a criterion satisfied by all convergent series and use this to conclude that certain series do not converge
- Determine for which p the sum

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

converges (and why!)

Reminders

- \bullet Gradescope HW #1: due Tuesday evening
- MyLab HW #3: due Wednesday at noon

Example: (A telescoping series)

$$\sum_{k=2}^{\infty} \left(\sin\left(\frac{\pi}{k}\right) - \sin\left(\frac{\pi}{k+1}\right) \right)$$

$$S_1 = a_2 = \sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{3}\right)$$

$$S_2 = a_2 + a_3 = \left(\sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{3}\right)\right) + \left(\sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)\right)$$

(Middle two $\sin\left(\frac{\pi}{3}\right)$ terms cancel out)

$$S_N = a_2 + a_3 + \dots + a_{N+1}$$

$$\sum_{k=2}^{N+1} \left(\sin \left(\frac{\pi}{k} \right) - \sin \left(\frac{\pi}{k+1} \right) \right)$$

$$= \left(\sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{3}\right)\right) + \left(\sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)\right) + \dots$$
$$+ \left(\sin\left(\frac{\pi}{N}\right) - \sin\left(\frac{\pi}{N+1}\right)\right) + \left(\sin\left(\frac{\pi}{N+1}\right) - \sin\left(\frac{\pi}{N+2}\right)\right)$$

(All middle terms cancel out, leaving only the first and last)

$$\Rightarrow \sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{N+2}\right)$$

$$\sum_{k=2}^{\infty} \left(\sin\left(\frac{\pi}{k}\right) - \sin\left(\frac{\pi}{k+1}\right)\right) = \lim_{N \to \infty} S_N$$

$$= \lim_{N \to \infty} \left(\sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{N+2}\right)\right)$$

$$= 1 - 0 = \boxed{1}$$

Bad news: Other than geometric and telescoping series, it's hard to find a formula for S_N , and therefore impossible to determine the sum's convergence (or even whether it converges).

Best we can do: Answer the question: Does $\sum_{k=1}^{\infty} a_k$ converge or not?

In order for there to be any hope of a series converging, the terms must approach 0.

The Divergence Test:

If $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{k\to\infty} a_k = 0$. (If $\lim_{k\to\infty} a_k \neq 0$, then $\sum_{k=1}^{\infty} a_k$ diverges.)

Proof: Suppose $\sum a_k$ converges. Let

$$S_N = \sum_{k=1}^N a_k$$

be the Nth partial sum.

We know that:

$$\lim_{N \to \infty} S_N = S$$

and

$$\lim_{N \to \infty} S_{N-1} = S.$$

Thus,

$$\lim_{N\to\infty} (S_N - S_{N-1}) = \lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N-1} = S - S = 0.$$

So,

$$\lim_{N \to \infty} a_N = 0.$$

Example: The series:

$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k} \right).$$

Here, $a_k = 1 + \frac{1}{k}$.

$$\lim_{k\to\infty}\left(1+\frac{1}{k}\right)=1\neq 0.$$

By the Divergence Test, this series diverges.

Example:

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$
 (Harmonic series)

The terms do go to 0... but that doesn't mean the sum converges!

 \Rightarrow the Divergence Test is inconclusive.

This series actually diverges:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$$

Group terms:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$

(Number of terms grouped together grows with powers of 2)

$$1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) + \dots$$

(The bolded terms are lowered to a term less than the actual term)

$$=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots=\infty$$

The series is "larger than" infinity, so the Harmonic series diverges:

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

Example: What about

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots$$

$$= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{7^2} + \frac{1}{8^2} + \dots + \frac{1}{15^2} + \dots$$

(Group terms)

$$= \frac{1}{1^2} + \left(\frac{1}{2^2} + \frac{1}{3^2}\right) + \left(\frac{1}{4^2} + \dots + \frac{1}{7^2}\right) + \left(\frac{1}{8^2} + \dots + \frac{1}{15^2}\right) + \dots$$

$$< 1 + \left(\frac{1}{2^2} + \frac{1}{2^2}\right) + \left(\frac{1}{4^2} + \dots + \frac{1}{4^2}\right) + \left(\frac{1}{8^2} + \dots + \frac{1}{8^2}\right) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l = 2$$

So, this series converges to a number less than 2.

Conclusion:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} < 2$$

Why does this mean the series converges?

Let
$$S_N = \sum_{k=1}^N \frac{1}{k^2}$$
.

Let $S_N = \sum_{k=1}^N \frac{1}{k^2}$. The sequence $\{S_N\}$ is increasing (therefore monotonic) and bounded above by 2. By the Monotone Convergence Theorem, it converges:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \lim_{N \to \infty} S_N \text{ converges.}$$

Fact:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} = 1.644934\dots$$

In summary:

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty \quad \text{but} \quad \sum_{k=1}^{\infty} \frac{1}{k^2} \text{ converges.}$$

What's the difference? The terms in both series go to 0, but the second series goes to 0 faster!

In order to converge, not only must $a_k \to 0$, but it must do so quickly!

Example:

$$\sum_{k=1}^{\infty} \frac{1}{k^{1.5}} ? \sum_{k=1}^{\infty} \frac{1}{k^{0.0001}} ?$$

Fact: p-series test

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$$

- Converges when p > 1
- Diverges when $p \leq 1$

Proof: Suppose p > 1. Graph $f(x) = \frac{1}{x^p}$: Graph of $f(x) = \frac{1}{x^p}$ for p > 1

Now, we find the area under the curve using boxes.

$$f(x) = \frac{1}{x^p}$$
 with boxes

 $f(x) = \frac{1}{x^p}$ with red and blue boxes

In general:

$$\sum_{k=2}^{N} \frac{1}{k^{p}} < \int_{1}^{N} \frac{1}{x^{p}} dx < \sum_{k=1}^{N-1} \frac{1}{k^{p}}$$

$$\int_{1}^{N} \frac{1}{x^{p}} dx = \int_{1}^{N} x^{-p} dx = \frac{1}{-p+1} x^{-p+1} \Big|_{1}^{N}$$

$$= \frac{1}{-p+1} N^{-p+1} - \frac{1}{-p+1}$$

$$= \frac{1}{1-p} N^{-(p-1)} + \frac{1}{p-1}$$

$$\sum_{k=2}^{N} \frac{1}{k^{p}} < \frac{1}{1-p} N^{-(p-1)} + \frac{1}{p-1} < \sum_{k=1}^{N-1} \frac{1}{k^{p}}$$

$$S_{N-1} < \frac{1}{1-p} N^{-(p-1)} + \frac{1}{p-1} < S_{N-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S - 1 < \frac{1}{p-1} < S < \frac{1}{p-1} + 1$$

Rearrange:

Therefore, the sum converges when p > 1:

$$\frac{1}{p-1} < \sum_{k=1}^{\infty} \frac{1}{k^p} < \frac{1}{p-1} + 1$$

Example (p=2):

$$\frac{1}{2-1} < \sum_{k=1}^{\infty} \frac{1}{k^2} < \frac{1}{2-1} + 1$$
$$1 < \sum_{k=1}^{\infty} \frac{1}{k^2} < 2$$

Example (p=3):

$$\sum_{k=1}^{\infty} \frac{1}{k^3} \text{ is between } \frac{1}{3-1} \text{ and } \frac{1}{3-1}+1 \quad \left(\frac{1}{2} \text{ and } \frac{3}{2}\right)$$

Actual value: 1.2020569... (Apery's constant)